Classes
Members
a
- Source:
The 4x4 matrix with all the a-parts. This data is need for the shader
b
- Source:
The 4x4 matrix with all the b-parts. This data is need for the shader
elements :Array.<QuadRingElement>
- Source:
The elements of the matrix, in a column-major order
Type:
- Array.<QuadRingElement>
isQuadRingMatrix4 :boolean
- Source:
Flag to precise the type of the object
Type:
- boolean
ring :QuadRing
- Source:
The underlying quadratic ring
Type:
Methods
clone() → {QuadRingMatrix4}
Return a copy of the current matrix.
Returns:
- Type
- QuadRingMatrix4
copy(m) → {QuadRingMatrix4}
Set the current matrix to m
Parameters:
Name | Type | Description |
---|---|---|
m |
QuadRingMatrix4 |
Returns:
- Type
- QuadRingMatrix4
equals(matrix) → {boolean}
Check if the two matrices are equal
Parameters:
Name | Type | Description |
---|---|---|
matrix |
QuadRingMatrix4 |
Returns:
- Type
- boolean
fromArray(array, offset) → {QuadRingMatrix4}
Set the coefficient from an array
Parameters:
Name | Type | Default | Description |
---|---|---|---|
array |
Array.<QuadRingElement> | ||
offset |
number |
0
|
Returns:
- Type
- QuadRingMatrix4
getEntry(i, j) → {QuadRingElement}
- Source:
Return the ij-entry
Parameters:
Name | Type | Description |
---|---|---|
i |
number | the row index |
j |
number | the column index |
Returns:
- Type
- QuadRingElement
identity()
Set the current matrix to the identity
invert() → {QuadRingMatrix4}
Set the matrix to its inverse. We recall that the determinant of the matrix is assumed to be one.
Returns:
- Type
- QuadRingMatrix4
multiply(m) → {QuadRingMatrix4}
Matrix multiplication
Parameters:
Name | Type | Description |
---|---|---|
m |
QuadRingMatrix4 |
Returns:
- Type
- QuadRingMatrix4
multiplyMatrices(m1, m2) → {QuadRingMatrix4}
Set the matrix to the product m1 * m2
Parameters:
Name | Type | Description |
---|---|---|
m1 |
QuadRingMatrix4 | |
m2 |
QuadRingMatrix4 |
Returns:
- Type
- QuadRingMatrix4
multiplyScalar(s) → {QuadRingMatrix4}
Multiply the matrix by a scalar
Parameters:
Name | Type | Description |
---|---|---|
s |
QuadRingElement |
Returns:
- Type
- QuadRingMatrix4
premultiply(m) → {QuadRingMatrix4}
Matrix pre-multiplication
Parameters:
Name | Type | Description |
---|---|---|
m |
QuadRingMatrix4 |
Returns:
- Type
- QuadRingMatrix4
set(n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44) → {QuadRingMatrix4}
Set the elements of this matrix to the supplied row-major values n11, n12, ... n44.
Parameters:
Name | Type | Description |
---|---|---|
n11 |
QuadRingElement | |
n12 |
QuadRingElement | |
n13 |
QuadRingElement | |
n14 |
QuadRingElement | |
n21 |
QuadRingElement | |
n22 |
QuadRingElement | |
n23 |
QuadRingElement | |
n24 |
QuadRingElement | |
n31 |
QuadRingElement | |
n32 |
QuadRingElement | |
n33 |
QuadRingElement | |
n34 |
QuadRingElement | |
n41 |
QuadRingElement | |
n42 |
QuadRingElement | |
n43 |
QuadRingElement | |
n44 |
QuadRingElement |
Returns:
- Type
- QuadRingMatrix4
setEntry(i, j, value) → {QuadRingMatrix4}
- Source:
Set the value of the ij-entry
Parameters:
Name | Type | Description |
---|---|---|
i |
number | the row index |
j |
number | the column index |
value |
QuadRingElement |
Returns:
- Type
- QuadRingMatrix4
toArray(array, offset) → {Array.<QuadRingElement>}
Return the elements of the matrix as an array
Parameters:
Name | Type | Default | Description |
---|---|---|---|
array |
Array.<QuadRingElement> | ||
offset |
number |
0
|
Returns:
- Type
- Array.<QuadRingElement>
toMatrix4() → {Matrix4}
Convert the matrix to a Matrix4 (with number type entries)
Returns:
- Type
- Matrix4
transpose() → {QuadRingMatrix4}
Set the matrix to its transpose
Returns:
- Type
- QuadRingMatrix4